Another Method for Extracting Cube Roots

Brian J. Shelburne
Dept of Math and Computer Science
Wittenberg University

Probably the easiest way (?) to compute the cube root of a is to use the iteration formula

$$x_{n+1} = \frac{2x_n^3 + a}{3x_n^2}.$$

However, while checking out an article in the December 1958 issue of the Communications of the ACM I ran across a paper that demonstrated another method for extracting cube roots. The method was useful (?) since it was done using fixed point arithmetic, it required no division and could be modified so only minimal multiplication was needed (both “expensive” operations for computers in the 1950’s). It’s similar to the method of extracting a square root by hand.
The Theory

Let X be the number whose cube root we want.

Represent $\sqrt[3]{X}$ by the sum $\sum_{i=1}^{\infty} d_i 10^{n-i}$ where d_i is a digit between 0 and 9 and n is the number of digits above the decimal point. Letting $a_i = d_i 10^{n-i}$ we can write $X = (a_1 + a_2 + \ldots + a_n + \ldots)^3$.

For positive integer k, $(a_1 + a_2 + \ldots + a_k)^3$ approximates X and so $(a_1 + a_2 + \ldots + a_k)$ approximates $\sqrt[3]{X}$.

We will show how to compute each term a_k or more exactly each digit d_k in an iterative fashion such that at each stage the error $X - (a_1 + a_2 + \ldots + a_{k-1} + a_k)^3$ decreases.

This is done by expanding $(a_1 + a_2 + \ldots + a_{k-1} + a_k)^3$ in terms of $(a_1 + a_2 + \ldots + a_{k-1})$ and a_k; that is $(a_1 + a_2 + \ldots + a_{k-1} + a_k)^3 = (a_1 + a_2 + \ldots + a_{k-1})^3 + 3 \cdot (a_1 + a_2 + \ldots + a_{k-1})^2 \cdot a_k + 3 \cdot (a_1 + a_2 + \ldots + a_{k-1}) \cdot a_k^2 + a_k^3$

Then if $X_{k-1} = X - (a_1 + a_2 + \ldots a_{k-1})^3$ is the error at the k-1st stage we choose the largest a_k so that $X - (a_1 + a_2 + \ldots + a_{k-1})^3 - \left(3 \cdot (a_1 + a_2 + \ldots + a_{k-1})^2 \cdot a_k + 3 \cdot (a_1 + a_2 + \ldots + a_{k-1}) \cdot a_k^2 + a_k^3\right)$ is non-negative or equivalently $X_k = X_{k-1} - \left(3 \cdot (a_1 + a_2 + \ldots a_{k-1})^2 \cdot a_k + 3 \cdot (a_1 + a_2 + \ldots a_{k-1}) \cdot a_k^2 + a_k^3\right)$ is non-negative.
An Example - Find $\sqrt{79201}$

Stage 1: Begin by finding the largest value of a_i such that a_i^3 is less than or equal to X, or equivalently finding the largest value of a_i such that the error $X_i = X - a_i^3$ is non-negative.

We partition the digits into groups of three (i.e. 79 201.000) and start with the left-most group. In this case the largest integer (digit) whose cube is less than or equal to 79 is 4.

\[
\begin{array}{c}
4 \\
+ \- \- \- \- \- \- \- \\
| 79 201 000 \\
4^3 - 64 \\
\hline
15 201 = X_i
\end{array}
\]

We then bring down the next group of three digits. This has the effect of scaling the answer by 10.
Stage 2
Given the value of $a_i = 4\times10$ (because of scaling) find the largest value of a_2 such that the error $X_2 = X_1 - \left[3 \cdot a_i^2 a_2 + 3 \cdot a_i a_2^2 + a_2^3\right]$ is non-negative. Note that $X_2 = X - (a_i + a_2)^3$

Find the largest digit d_2 such that $3 \cdot 1600 \cdot d_2 + 3 \cdot 40 \cdot d_2^2 + d_2^3 = 4800 d_2 + 120 \cdot d_2^2 + d_2^3$ is less than or equal to 15210

\[
\begin{array}{c|cc}
4 & d_2 \\
\hline
3 \times 1600 \times d_2 + 3 \times 40 \times d_2^2 + d_2^3 & 4^3 \\
4800 \times d_2 + 120 \times d_2^2 + d_2^3 & -64 \\
(4800 + 120 \times d_2 + d_2^2) \times d_2 & 15 \ 201 \\
\end{array}
\]

$d_2 = 3$ is too big (15507) so we use $d_2 = 2$

\[
\begin{array}{c|cc}
4 & d_2 \\
\hline
3 \times 1600 \times d_2 + 3 \times 40 \times d_2^2 + d_2^3 & 4^3 \\
4800 \times 2 + 120 \times 2^2 + 2^3 & -10 \ 088 \\
\end{array}
\]

\[
\begin{array}{c|cc}
4 \times 1600 \times 2 + 3 \times 40 \times 2^2 + 2^3 & 15 \ 201 \\
4800 \times 2 + 120 \times 2^2 + 2^3 & -10 \ 088 \\
\end{array}
\]

\[
\begin{array}{c|cc}
5 \times 1600 \times 2 + 3 \times 40 \times 2^2 + 2^3 & 15 \ 201 \\
4800 \times 2 + 120 \times 2^2 + 2^3 & -10 \ 088 \\
\end{array}
\]

\[
\begin{array}{c|cc}
5 \times 1600 \times 2 + 3 \times 40 \times 2^2 + 2^3 & 15 \ 201 \\
4800 \times 2 + 120 \times 2^2 + 2^3 & -10 \ 088 \\
\end{array}
\]

\[
\begin{array}{c|cc}
5 \times 1600 \times 2 + 3 \times 40 \times 2^2 + 2^3 & 15 \ 201 \\
4800 \times 2 + 120 \times 2^2 + 2^3 & -10 \ 088 \\
\end{array}
\]

\[
\begin{array}{c|cc}
5 \times 1600 \times 2 + 3 \times 40 \times 2^2 + 2^3 & 15 \ 201 \\
4800 \times 2 + 120 \times 2^2 + 2^3 & -10 \ 088 \\
\end{array}
\]
Stage 3 - In general given \((a_1 + a_2 + \ldots + a_{k-1})\) find the largest value of \(a_k\) such that the error
\[
X_k = X_{k-1} - \left[3 \cdot (a_1 + a_2 + \ldots + a_{k-1})^2 a_k + 3 \cdot (a_1 + a_2 + \ldots + a_{k-1}) a_k^2 + a_k^3\right]
\]
is non-negative. Note that
\[
X_k = X - (a_1 + a_2 + \ldots + a_k)^3
\]
Find the largest digit \(d_3\) such that
\[
3 \cdot 176400 \cdot d_3 + 3 \cdot 420 \cdot d_3^2 + d_3^3 = 529200 \cdot d_3 + 1260 \cdot d_3^2 + d_3^3
\]
is less than or equal to 5113000. Because of scaling \((a_1 + a_2)^2 = 420\)

\[
\begin{align*}
4^3 & \quad | \quad 79 \, 201 \, 000 \\
4^3 & \quad \quad -64 \\
3 \times 1600 \times 2^2 + 3 \times 40 \times 2^2 + 2^3 & \quad \quad 15 \, 201 \\
4800 \times 2^2 + 120 \times 2^2 + 2^3 & \quad \quad -10 \, 088 \\
3 \times 176400 \times d_3 + 3 \times 420 \times d_3^2 + d_3^3 & \quad = \quad 5 \, 113 \, 000 \\
= 529200 \times d_3 + 1260 \times d_3^2 + d_3^3
\end{align*}
\]
We estimate \(d_3\) to be 9 which works

\[
\begin{align*}
4^3 & \quad | \quad 79 \, 201 \, 000 \\
4^3 & \quad \quad -64 \\
3 \times 1600 \times 2^2 + 3 \times 40 \times 2^2 + 2^3 & \quad \quad 15 \, 201 \\
4800 \times 2^2 + 120 \times 2^2 + 2^3 & \quad \quad -10 \, 088 \\
3 \times 176400 \times d_3 + 3 \times 420 \times d_3^2 + d_3^3 & \quad = \quad 5 \, 113 \, 000 \\
= 529200 \times d_3 + 1260 \times d_3^2 + d_3^3 & \quad -4 \, 865 \, 589 \\
\end{align*}
\]
\[
247 \, 411 \, 000
\]
Reducing Computational Complexity - I

We can simplify the squaring of \((a_1 + a_2 + \ldots + a_{k-1})^2\) at the \(k^{th}\) step by using previously computed values. Let \(u_k\) be the value of \((a_1 + a_2 + \ldots + a_{k-1})\) and \(v_k = u_k^2\) be the value of \((a_1 + a_2 + \ldots + a_{k-1})^2\) at the \(k^{th}\) step. It’s not difficult to derive a pair of interlocking formulas to compute \(u_k\) and \(v_k\).

\[
u_k = \begin{cases}
0 & \text{if } k = 0 \\
(u_{k-1} + d_{k-1}) \cdot 10 & \text{if } k > 0
\end{cases}
\]

and

\[
v_k = \begin{cases}
0 & \text{if } k = 0 \\
(v_{k-1} + 2 \cdot u_{k-1} \cdot d_{k-1} + d_{k-1}^2) \cdot 100 & \text{if } k > 0
\end{cases}
\]

Given \(u_{k-1}\) and \(v_{k-1}\) the computational cost of computing \(v_k = (a_1 + a_2 + \ldots + a_{k-1})^2\) is reduced to an addition followed by a multiplication by 10 to obtain \(u_k\) plus two additions and three simple multiplications (by 2, by the digit \(d_k\) and by 100) to obtain \(v_k\) (assuming a simple table lookup to find the square of the digit \(d_k\)).

\[
\begin{array}{c}
4.9 \\
+ \hline
79 201.000 \\
\hline
-64 \\
- \hline
15 201 \\
\hline
120 088 \\
\hline
5 113 000 \\
\hline
-4 865 789 \\
\hline
247 411 000
\end{array}
\]

For example \((1600 + 2 \times 40 \times 2 + 2^3) \times 100 = 176400\).
Stage 4

\[
\begin{align*}
& \quad 4^3 \quad 9^3 \\
& + \quad 4 \quad 2 \quad 9 \quad 4 \\
& \quad 79201000000 \\
& - \quad 64 \\
\end{align*}
\]

\[
\begin{align*}
& 3 \times 1600 \times 2 + 3 \times 40 \times 2^2 + 2^3 \\
& 4800 \times 2 + 120 \times 2^2 + 2^3 \\
& \quad 15201 \\
& \quad -10088 \\
\end{align*}
\]

\[
\begin{align*}
& 3 \times 176400 \times d_3 + 3 \times 420 \times d_3^2 + d_3^3 \\
& = 529200 \times 9 + 1260 \times 9^2 + 9^3 \\
& \quad 5113000 \\
& \quad -4865589 \\
\end{align*}
\]

\[
\begin{align*}
& 3 \times 18404100 \times d_4 + 3 \times 4290 \times d_4^2 + d_4^3 \\
& 55212300 \times d_4 + 12870 \times d_4^2 + d_4^3 \\
& \quad 247411000 \\
& \quad -221055184 \\
\end{align*}
\]

\[
\begin{align*}
u_4 &= (u_3 + d_3) \times 10 = 4290 \\
v_4 &= (v_3 + 2 \times u_3 \times d_3 + d_3^2) \times 100 = 18404100
\end{align*}
\]
Reducing Computational Complexity - II

The *difference* between adjacent terms of the form $3 \cdot v_k \cdot m + 3 \cdot u_k \cdot m^2 + m^3$ for $m = 1, 2,$ etc can be written as

$$3 \cdot v_k \cdot m + 3 \cdot u_k \cdot m^2 + m^3 - \left(3 \cdot v_k \cdot (m-1) + 3 \cdot u_k \cdot (m-1)^2 + (m-1)^3 \right) = 3 \cdot v_k + 3 \cdot u_k \cdot (2m-1) + \Delta m^3$$

Let $\Delta m^3 = m^3 - (m-1)^3$ denote the difference between adjacent cubes

The computational cost of estimating the largest d_k so that $X_{k-1} - 3 \cdot v_k \cdot d_k + 3 \cdot u_k \cdot d_k^2 + d_k^3$ is non-negative can be simplified by subtracting $3 \cdot v_k + 3 \cdot u_k \cdot 1 + 1$ from X_{k-1} and continuing to subtract expressions of the form $3 \cdot v_k + 3 \cdot u_k \cdot (2m-1) + \Delta m^3$ until a negative value is obtained (then restoring the previous value). The difference between adjacent cubes (i.e. 1, 7, 19, 37, 61, 91, 127, 169, 217, 271) is easily found by table look up.

For example, the calculation for $k = 4$ above (where $3 \cdot v_4 = 55, 212, 300$ and $3 \cdot u_4 = 12, 870$) can be redone using the following table.

<table>
<thead>
<tr>
<th>d_4</th>
<th>$55212300 + 12870 \times (2k-1) + \Delta d_4^3$</th>
<th>$X_k \times 1000 = 247411000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$55212300 + 12870 \times 1 + 1$</td>
<td>192185829</td>
</tr>
<tr>
<td>2</td>
<td>$55212300 + 12870 \times 3 + 7$</td>
<td>136934912</td>
</tr>
<tr>
<td>3</td>
<td>$55212300 + 12870 \times 5 + 19$</td>
<td>816582434</td>
</tr>
<tr>
<td>4</td>
<td>$55212300 + 12870 \times 7 + 37$</td>
<td>26355816</td>
</tr>
<tr>
<td>5</td>
<td>$55212300 + 12870 \times 9 + 61$</td>
<td>-28972375</td>
</tr>
<tr>
<td>6</td>
<td>$55212399 + 12870 \times 11 + 127$</td>
<td>…</td>
</tr>
</tbody>
</table>

Computationally for each row you need only one multiplication (by an odd integer), two additions and one table look up for the first difference of the cube.
References

My Home Page: http://www4.wittenberg.edu/academics/mathcomp/shelburn.shtml