Geometric Series: In class we showed how to find the sum of a converging geometric series by using the “shift technique” to find a closed form expression for \(s_n \), the \(n \)th partial sum (i.e. the sum of the first \(n \) terms) of the geometric series, then evaluating the limit \(\lim_{n \to \infty} s_n \) for the sequence of partial sums.

Example: What is \(\sum_{k=0}^{\infty} \left(\frac{1}{7} \right)^k = 1 + \frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \ldots \)?

The shift technique:

1. Write out the \(n \)th partial sum (a finite sum)
 \[
 s_n = 1 + \frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \ldots + \frac{1}{7^n}
 \]

2. Recall that for a geometric series there is a value \(r \) such that each successive term is \(r \) times the previous term. In this example \(r = \frac{1}{7} \). Multiply the \(n \)th partial sum by \(r \) (this causes the shift).
 \[
 \frac{1}{7} s_n = \frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \ldots + \frac{1}{7^{n+1}}
 \]

3. Subtract \(r \cdot s_n \) from \(s_n \). You will get \(s_n - r \cdot s_n = s_n (1 - r) \) on the left and a whole lot of cancellation of terms on the right!

 \[
 s_n - \frac{1}{7} s_n = 1 + \frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \ldots + \frac{1}{7^n}
 \]

 \[
 \frac{1}{7} s_n = \frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \ldots + \frac{1}{7^n} + \frac{1}{7^{n+1}}
 \]

 \[
 s_n - \frac{1}{7} s_n = 1 - \frac{1}{7^{n+1}}
 \]
4. Now solve for a closed form for \(s_n \)

\[
s_n \left(1 - \frac{1}{7} \right) = 1 - \frac{1}{7^{n+1}} \text{ or } s_n = \frac{7}{6} \left(1 - \frac{1}{7^{n+1}} \right)
\]

5. Taking the limit of the closed form for \(s_n \) is easy yielding the value of the converging infinite series

\[
s_n = \frac{7}{6} \left(1 - \frac{1}{7^{n+1}} \right) \to \frac{7}{6} \text{ as } n \to \infty \text{ hence } \sum_{k=0}^{\infty} \left(\frac{1}{7} \right)^k = 1 + \frac{1}{7} + \frac{1}{7^2} + \frac{1}{7^3} + \ldots = \frac{7}{6}
\]

Do the Following: Using the above technique and showing all the work (demonstrating you understand what you are doing) evaluate the following converging geometric series using the shift technique to obtain the \(n \)th partial sum and finding the limit for the sequence of partial sums. Be sure to correctly determine \(r \) for each example. Note below that both 0 based and 1 based indexing are used.

#1 Find the sum \(\sum_{k=1}^{\infty} \left(\frac{1}{4} \right)^k = \frac{1}{4} + \left(\frac{1}{4} \right)^2 + \left(\frac{1}{4} \right)^3 + \ldots + \left(\frac{1}{4} \right)^k + \ldots \)

#2 Find the sum \(\sum_{k=1}^{\infty} \left(\frac{4}{17} \right)^k = \frac{4}{17} + \left(\frac{4}{17} \right)^2 + \left(\frac{4}{17} \right)^3 + \ldots + \left(\frac{4}{17} \right)^k + \ldots \)

#3 Find the sum \(\sum_{k=1}^{\infty} 2 \left(\frac{1}{9} \right)^k = 2 \left(\frac{1}{9} \right) + 2 \left(\frac{1}{9} \right)^2 + 2 \left(\frac{1}{9} \right)^3 + \ldots + 2 \left(\frac{1}{9} \right)^k + \ldots \)

#4 Find the sum \(\sum_{k=1}^{\infty} \left(\frac{-1}{6} \right)^k = \frac{-1}{6} + \left(\frac{-1}{6} \right)^2 + \left(\frac{-1}{6} \right)^3 + \ldots + \left(\frac{-1}{6} \right)^k + \ldots \) Note that the signs of this geometric series alternate!

#5 Find the sum \(\sum_{k=0}^{\infty} \left(\frac{2}{3} \right)^k = 1 + \left(\frac{2}{3} \right)^2 + \left(\frac{2}{3} \right)^3 + \ldots + \left(\frac{2}{3} \right)^k + \ldots \)
Every repeating decimal expansion can be expressed as a geometric series. For example

\[0.333\overline{3} = \sum_{k=1}^{\infty} 3 \left(\frac{1}{10} \right)^k = 3 \left(\frac{1}{10} \right) + 3 \left(\frac{1}{10} \right)^2 + \ldots + 3 \left(\frac{1}{10} \right)^k + \ldots \]

\[0.131313\overline{13} = \sum_{k=1}^{\infty} 13 \left(\frac{1}{100} \right)^k = 13 \left(\frac{1}{100} \right) + 13 \left(\frac{1}{100} \right)^2 + \ldots + 13 \left(\frac{1}{100} \right)^k + \ldots \]

#6 Express the repeating decimal expansion \(0.111\overline{1}\) as a geometric series and use the techniques above to determine what the geometric series sums to. Note that your answer will be a fraction, a verification of the fact that every repeating decimal expansion represents a rational number.

Instructions: Hand in this cover sheet with your solution write ups. Your write ups should be clear and well organized; I want to see your work using the format given by the example for \(\sum_{k=0}^{\infty} \frac{1}{7^k}\). You are allowed to work together but you must do your own write ups (don’t copy someone else’s work).

Extra Credit Challenge: Every *eventually* repeating decimal (e.g. \(0.1\overline{666}\)) can be expressed as a finite sum plus a geometric series. Can you decompose \(0.1\overline{666}\) into a finite sum plus a geometric series then apply the techniques used about to find the sum of the geometric series to find what rational number \(0.1\overline{666}\) equals?