Integral Functions and the 2nd Fundamental Theorem of Calculus

Recall that for a function \(f(x) \) which is continuous on a closed interval \([a,b]\), the definite integral \(\int_a^b f(x) \, dx \) which is the limit of a Riemann sum is the area under the curve. It’s a number.

Starting with the definite integral and we can turn it into a function by making the upper limit of integration the variable so that the integral function \(A(x) = \int_a^x f(t) \, dt \) returns the area under the function \(f(t) \) between a and (the variable) \(x \).

Note the change of notation for the integrand: \(f(t) \) instead of \(f(x) \). The function being integrated is still the same but so as not to confuse the variable used by the integrand with the variable \(x \) used by the integral function, the change the former to \(t \).

Aside: Think of the integral function \(A(x) = \int_a^x f(t) \, dt \) as a 3rd kind of integral after the indefinite integral \(\int f(x) \, dx \) (anti-derivative) which is a (class of) function(s) and the definite integral \(\int_a^b f(x) \, dx \) (area under the curve) which is a number.

Example: \(A(x) = \int_0^x t \, dt \) is the area of a triangle whose side is length \(x \)

Since we know to find the area of a right triangle with side \(x \), we can evaluate the definite integral function \(A(x) = \int_0^x t \, dt = \frac{x^2}{2} \). If we formally evaluated the integral using the FTC, we’d obtain the same answer.
Example: If for the *same integrand* we make the lower limit of integration equal to 1 we obtain a different integral function: \(A(x) = \int_1^x t \, dt = \frac{x^2}{2} - \frac{1}{2} \) (Why?). This function is the area of a certain kind of trapezoid.

\[\int_1^x x \, dt = \frac{x^2}{2} - \frac{1}{2} \]

The Integral Function: Given a function \(f(t) \) which is continuous on the interval \([a, b]\) containing \(x \), we define the integral function \(A(x) = \int_a^x f(t) \, dt \) as the function which returns the area under the curve \(f(t) \) between \(a \) and \(x \).

The left endpoint at \(a \) is fixed; the right endpoint at \(x \) is a variable; so it can vary (move). And as \(x \) moves the area under the curve of \(f \) changes. So \(A(x) \) is a function.

Example: If \(x = a \) what is \(A(a) \), the area under the curve when both endpoints are the same?

Answer: \(A(a) = 0 \)

Question: True or False: For \(x < a \) and \(f(t) \) continuous does \(\int_a^x f(t) \, dt = -\int_x^a f(t) \, dt \)?

Think definite integrals with fixed \(x \).
The 2nd Fundamental Theorem of Calculus proves that \(A(x) = \int_a^x f(t) \, dt \) is a differentiable function whose derivative is \(f(x) \); that is \(\frac{d}{dx}(A(x)) = f(x) \).

The 2nd Fundamental Theorem of Calculus: If \(f \) is a continuous function on an interval containing \(a \) then the definite integral function \(A(x) = \int_a^x f(t) \, dt \) defined as the area under the curve between \(a \) and \(x \) is the anti-derivative of \(f \); or to put it another way \(\frac{d}{dx}(A(x)) = f(x) \).

Proof \(\frac{d}{dx}(A(x)) = \lim_{h \to 0} \frac{A(x+h) - A(x)}{h} = \lim_{h \to 0} \int_x^{x+h} f(t) \, dt = \lim_{h \to 0} \frac{f(x^*) \cdot h}{h} = \lim_{h \to 0} f(x^*) = f(x) \)

We start off with the definition of derivative. Since we’re looking at the difference of two areas \(A(x+h) \) and \(A(x) \) we can express this as the definite integral \(\int_x^{x+h} f(t) \, dt \). This latter is the area of a small rectangle-like area under the curve. It can be shown that there is some point \(x^* \) between \(x \) and \(x+h \) such that the area of the rectangle of height \(f(x^*) \) and width \(h \) which is \(f(x^*) \cdot h \) equals this area (see diagram).

Since \(f \) is continuous, as \(h \) gets smaller, \(f(x^*) \) approaches \(f(x) \) since \(x^* \) is between \(x \) and \(x+h \).

Thus the derivative of \(A(x) \) equals \(f(x) \); that is \(\frac{dA}{dx} = f(x) \)

\[
\text{QED}
\]
In the case that \(f(x) \) has an explicitly known anti-derivative \(F(x) \) we have

\[
A(x) = \int_{a}^{x} f(t) \, dt = F(x) - F(a)
\]

For example

\[
\int_{1}^{3} t^2 \, dt = \frac{x^3}{3} - \frac{1}{3}
\]

So why is this useful?

Consider the following integrals

\[
\begin{align*}
\int e^{kx} \, dx &= \frac{1}{k} e^{kx} + C \\
\int x \cdot e^{x^2} \, dx &= \frac{1}{2} e^{x^2} + C \\
\int x \cdot e^{x^2} \, dx &= x \cdot e^{x^2} - e^{x} + C \\
\int e^{-x^2} \, dx &= \int e^{-x^2} \, dx + C
\end{align*}
\]

The first three can be integrated using an elementary formula, u substitution and integral by parts respectively. Unfortunately there is no elementary function for the 4th integral (which is actually a useful integral). However we can define the anti-derivative functions as

\[
\int e^{-x^2} \, dx = \int_{a}^{x} e^{-t^2} \, dt + C.
\]

As it turns out there are a number of useful functions that can only be defined *as integral functions* which are all well-behaved since by the 2nd Fundamental Theorem of Calculus, they are all *differentiable* (and hence *continuous*).

Moreover using numerical technical of integration, values for integral functions can be computed to any degree of precision!