Math 171 – Discrete Mathematical Structures

Today’s Overview

Quotient – Remainder Theorem
div and mod
Representing Integers
Absolute Value and Triangle Inequality

Quotient Remainder Theorem

Given any integer \(n \) and positive integer \(d \), there exist unique integers \(q \) and \(r \) such that

\[
n = q d + r \quad \text{where} \quad 0 \leq r < d
\]

Example:

If \(n = 17 \) and \(d = 5 \) then \(17 = 3 \cdot 5 + 2 \)
If \(n = -17 \) and \(d = 5 \) then \(-17 = -4 \cdot 5 + 3 \)

div (\(/\)) and mod (%)

Python: remainder is same sign as divisor
Java, C, C++: remainder is same sign as dividend (rounded towards zero)

\[
n \mod d = n - d \cdot (n \div d)
\]

mod notation: e.g. \(16 \mod 7 = 2 \iff 16 = 7 \cdot k + 2 \) for some integer \(k \)

Examples

9/25/13 is a Wednesday. What day of the week will 9/25/14 be?

Prove: If \(n \mod 7 = 2 \) and \(m \mod 7 = 3 \) then \(n \cdot m \mod 7 = 6 \)

Prove: If \(n \mod 7 = 2 \) then there is no integer \(k \) such that \(k \cdot n \mod 7 = 0 \) unless \(k \) is a multiple of 7. (Hint: use method of exhaustion)

Question. Is the same true for \(n \mod 6 = 2 \)? Is there an integer \(m \) which is not a multiple of 6 such that \(n \cdot m \mod 6 = 0 \)?

Prove: The product of two consecutive integers is even

Representing Integers

Odd vs. Even or \(2k + 1 \) vs. \(2k \) integers

Since every odd prime \(p \) is in the form \(4k + 1 \) or \(4k + 3 \) for some integer \(k \), prove \(p^2 = 4k^2 + 1 \) for some integer \(k \)

Prove (see textbook): if \(n \) is any odd integer then \(n^2 = 8k + 1 \) for some integer \(k \)

Absolute Value and the Triangle Inequality

Absolute Value:

\[
| x | = \begin{cases}
 x & \text{if} \quad x \geq 0 \\
-x & \text{if} \quad x < 0
\end{cases}
\]

Triangle Inequality: For all real numbers \(x \) and \(y \), \(|x + y| \leq |x| + |y| \)
Written Homework #13 – Due M 9/30/13

Exercise Set 4.3 (page 179) #44, #45, #46

Exercise Set 4.4 (page 189) #19, #20, #23, #25, #29, #43