Math 171 – Discrete Mathematical Structures
Today’s Overview

Composition of Functions

1:1 functions
Onto functions
Cardinality

Finite Sets
Countably Infinite Sets
R is uncountable

Composition of Functions

If \(g: A \rightarrow B \) and \(f: B \rightarrow C \) are functions we define the composition of function \(f = g: A \rightarrow C \) as follows: For all \(x \in A \), \(f \circ g(x) = f(g(x)) \in C \).

Examples: If \(g(x) = x + 1 \) and \(f(x) = x^2 \), then
\[
(f \circ g)(x) = f(g(x)) = (x+1)^2 \quad \text{and} \quad g \circ f(x) = g(f(x)) = x^2 + 1
\]

Arrow Diagram Examples

Composition of One-to-One and Onto Functions

Result: If \(g: A \rightarrow B \) and \(f: B \rightarrow C \) are one-to-one functions then the composition \(f \circ g: A \rightarrow C \) is one-to-one

Pf: Show if \(f(g(x_1)) = f(g(x_2)) \) then \(x_1 = x_2 \).
Since \(f \) is one-to-one then by definition \(g(x_1) = g(x_2) \).
Since \(g \) is one-to-one then again by definition \(x_1 = x_2 \).

Composition of Onto Functions

Result: If \(g: A \rightarrow B \) and \(f: B \rightarrow C \) are onto then their composition \(f \circ g \) is onto.

Pf: To show \(f \circ g \) is onto show for any \(z \in C \) there is an \(x \in A \) such that \(f(g(x)) = z \). Since \(f \) is onto there is a \(y \in B \) such that \(f(y) = z \). Likewise since \(g \) is onto, for \(y \in B \) there is an \(x \in A \) such that \(g(x) = y \). Thus \(f(y) = f(g(x)) = z \) and the result follows.

Galileo’s Paradox: “There are as many squares as there are numbers because they are just as numerous as their roots.”
However \(\mathbb{Z}^+ \) is properly contained in the set of all squares !!!!

Cardinality: Two sets have the same cardinality if and only if there is a one-to-one correspondence between them
For sets \(A, B \) and \(C \), cardinality is
reflexive
symmetric
transitive.

Notation: For a set \(S \) let \(|S| \) denote the cardinality of \(S \)

Finite Sets
A set \(S \) is finite (or has finite cardinality) if and only if there is a 1:1 correspondence between a finite sequence of positive integers \(S_n = \{1, 2, 3, \ldots, n\} \) and \(S \). In this case we say \(|S| = n \)

Countably Infinite Sets
A set \(S \) is countably infinite if and only if there is a one-to-one correspondence between \(S \) and \(\mathbb{Z}^+ \).
The following sets are countably infinite: \(2\mathbb{Z}^+, \mathbb{Z}, \mathbb{Q}^+, \mathbb{Q} \)
Proving Cardinality of Two Sets are Equal

Show \(f: \mathbb{Z}^+ \rightarrow 2\mathbb{Z}^+ \) defined by \(f(n) = 2n \) is 1:1 and onto

One-to-one: Let \(f(n) = f(m) \). Then \(2n = 2m \) or \(n = m \).

Onto: Let \(n \in 2\mathbb{Z}^+ \). Then \(n = 2k \) for some \(k \in \mathbb{Z}^+ \). Thus \(f(k) = 2k = n \)

Show \(\mathbb{Z} \) is countably infinite; Define \(f: \mathbb{Z}^+ \) to \(\mathbb{Z} \) as follows

\[
 f(n) = \begin{cases}
 \frac{n}{2} & \text{if } n \text{ is even} \\
 -\frac{n-1}{2} & \text{if } n \text{ is odd}
 \end{cases}
\]

Countable Sets

A set \(S \) is countable if and only if it is finite or countably infinite.

A finite set \(S \) cannot be put into a 1:1 correspondence with a proper subset of itself; an infinite set \(S \) can be put into a 1:1 correspondence a proper subset of itself

Uncountable Sets

\(\mathbb{R} \), the set of all real numbers is uncountable; that is there is no one-to-one correspondence between \(\mathbb{R} \) and \(\mathbb{Z}^+ \). In particular there is no 1:1 correspondence between \((0,1) \) and \(\mathbb{Z}^+ \).

Aside: Prove \(0.99999 = 1 \)

Written Homework #28 – Due F 11/15/13

Exercise Set 7.4 (page 459)

#2, #3, #10, #15