Physics 313 assignment for Thursday, Aug. 27, 2009:

Reading:
If needed, review basic DC circuit material from Serway (chapter summaries)

New topics from Scherz:
Resistive DC circuits and voltage dividers: 3.5 (through p. 317); also see Examples 1-3 on pp. 55-58
Thévenin model: 2.19.1 (Norton model, 2.19.2, is optional)
Safety: 14.1 (note that much of this pertains to higher-voltage circuits than we’ll be working with, but it’s still important to know)
Multimeters: 2.14 (note that the voltmeter in the middle part of Fig. 2.56 should be an ammeter), 14.3 (optional)

Reading questions will be sent out by email after class; answers are due by 11 am Thursday.

Problems to hand in:
1) a) Which of the three resistors in the circuit below dissipates the most power, and how much power does that resistor dissipate? Show your reasoning.

![Circuit Diagram](image)

b) Are ¼ W resistors OK in this circuit? Explain.

2) You want to use a voltmeter with an impedance of R_V and an ammeter with an impedance of R_A, along with a DC power supply of voltage V, to determine the resistance of a resistor that has a true value of R.
 a) Sketch a circuit diagram for each of the two possible configurations you could use if you wanted to make simultaneous measurements of voltage and current in order to find R.
 b) For each of these configurations, derive an expression for the measured resistance—that is, find $R_m = V_m/I_m$, where V_m is the measured voltage (the voltage across the voltmeter) and I_m is the measured current (the current through the ammeter). Relate V_m and I_m to V, R, R_V, and R_A, and simplify so that your results for R_m depend only on R, R_V, and R_A.
 c) What percentage error in measuring R is made with each configuration if $R_V = 10$ R and $R_A = 0$ (ideal ammeter, not-so-ideal voltmeter)? What if $R_V = \infty$ and $R_A = 0.1$ R (ideal voltmeter, not-so-ideal ammeter)? Comment on your results.