1. See attached. Straight line on semilog scale = exponential
 \(\text{(so } I \approx \text{ e}^V \text{)} \)

2. Adjustable waveform clipper: \(V_{in} \rightarrow V_{out} = \frac{V_{in} + 6V}{6V} \)

 Diode is off for \(\text{Vin} < 6.6 \text{ V} \) (0.6 V drop across diode to turn on).

 So for \(\text{Vin} < 6.6 \text{ V} \), diode is like \(\infty \) R and \(V_{out} = V_{in} \).

 Diode is on for \(\text{Vin} \geq 6.6 \text{ V} \), and when diode is on, there's a 0.6 V drop across diode (resistor limits current + takes rest of voltage).

 So for \(\text{Vin} \geq 6.6 \text{ V} \), \(V_{out} = 6.6 \text{ V} \) → input will be clipped at 6.6 V.

a) If input = 5 Vpp triangle wave, amplitude = 2.5 V → not clipped, \(V_{out} = V_{in} \).

b) If input = 8 Vpp, amplitude = 4 V
 Still not clipped, \(V_{out} = V_{in} \).

3. a) \(\text{Vin} = +2 \text{V} \): neither diode on, so \(V_{out} = \text{Vin} = +2 \text{V} \)

 +4 V: \(R \) diode on, so current flows and \(V_{out} = 3.6 \text{V} \) \((V_R = 0.4 \text{V}) \)

 +6 V: \(R \) diode on, \(V_{out} = 3.6 \text{V} \) \((V_R = 2.4 \text{V}) \)

 -2 V: neither diode on, so \(V_{out} = \text{Vin} = -2 \text{V} \)

 -4 V: neither diode on, so \(V_{out} = \text{Vin} = -4 \text{V} \)

 -6 V: \(L \) diode on, so current flows through \(L \) diode + \(V_{out} = -5.6 \text{V} \)
 \((V_R = -0.4 \text{V}) \)

b) \(\text{Vin} = 10 \text{V} \) amplitude sine wave will be clipped at \(-5.6 \text{V}, +3.6 \text{V}\)

c) When \(\text{Vin} = -8 \text{V} \), \(L \) diode is on, so \(I \) flows up through \(L \) diode, then to left through resistor.

d) With no resistor in the circuit, there'd be nothing to limit the current through the diode(s), and when the voltage across a diode got to be larger than \(\approx 0.7 \text{V} \), enough current would flow to destroy the diode.