1. a) If load resistor shorts, \(+12 \text{ V} \) → 100 \(\Omega \),

there's a current path through the 100 \(\Omega \) resistor to ground, so

\[
I = \frac{12 \text{ V}}{100 \Omega} = 0.12 \text{ A} \quad \text{(12 V)} = 1.4 \text{ W} > \frac{1}{4} \text{ W}
\]

so the resistor will be damaged.

b) If load resistor removed, \(+12 \text{ V} \) → 100 \(\Omega \),

Since Zener diode in reverse breakdown, there's 5.1 \(\text{ V} \) across Zener \(\Rightarrow 12 - 5.1 = 6.9 \text{ V} \) across \(R \)

so current \(I = \frac{6.9 \text{ V}}{100 \Omega} = 0.069 \text{ A} \) through \(R \) + diode

so power dissipated in \(R \) = \(\frac{6.9 \text{ V}}{100 \Omega} \) = 0.48 \(\text{ W} \) > \(\frac{1}{4} \text{ W} \).

in diode = \(\frac{6.9 \text{ V}}{0.069 \text{ A}} \) (5.1 \(\text{ V} \)) = 0.35 \(\text{ W} \) > \(\frac{1}{4} \text{ W} \).

both the resistor and the diode will be damaged.

Actually, even with \(R_L \) in place, \(V_R = 12 - 5.1 = 6.9 \text{ V} \)
so the 100 \(\Omega \) resistor will dissipate \(> \frac{1}{4} \text{ W} \) regardless.

2. a) Full-wave bridge rectifier for AC line voltage \(\Rightarrow 5 \text{ V DC with less than 0.1 V ripple into } R_L = 180 \Omega \)

\[\text{want 5 V here}; \text{ to get this, need } 5 + 1.2 = 6.2 \text{ V peak from transformer}
\]

corresponds to \(V_{rms} = \frac{V_{pe}}{\sqrt{2}} \approx 4.4 \text{ V, rms transformer} \)

\[\text{to keep ripple } \Delta V_r < 0.1 \text{ V}, \]

\[\Delta V_r \approx \frac{V_{pe}(\text{avg})}{R_C} \quad \text{, } V_{pe}(\text{avg}) \approx 5 \text{ V, } f = 2(60 \text{ Hz}) = 120 \text{ Hz}, \]

\[R = 180 \Omega \]

\[C = \frac{V_{pe}}{fR \Delta V} = \frac{5 \text{ V}}{(120 \Omega)(180 \Omega)(0.1 \text{ V})} = 2.3 \text{ mF} = 2800 \mu\text{F} \]

b) Voltage regulator added (Zener in series with current-limiting \(R \) in parallel with \(C \)):

\[5 \text{ V} \]

Would want transformer \(V_{rms} \approx 4.5 \text{ V} \)

so \(V \) from rectifier always \(> 5 \text{ V} \) so Zener always on.