How the ENIAC took a Square Root

 Brian J. Shelburne
 Dept of Math & Comp Sci
 Wittenberg University
 April 6, 2002

 bshelburne@wittenberg.edu

 http://www4.wittenberg.edu/academics/mathcomp/shelburn.shtml

Why is this interesting?

Taking a square root is hard to do.

ENIAC was a “primitive” device.

Only two early computers (Z3 and ENIAC) implemented a square root operation.
Overview of ENIAC

Not a “stored program” computer; memory limited to data

Twenty 10-decimal digit (plus sign) accumulators for addition and subtraction (storage & processing not separate)

High-speed multiplier computed partial products. Accumulators used for their summation

Divider/Square Rooter: orchestrated a series of operations using 3 to 6 accumulators to divide or take square root.

Control distributed – ENIAC programmed by “wiring” together units via data and control buses to perform calculations

Functional Diagram of ENIAC after Fig 4. from “The ENIAC: History, Operation and Reconstruction in VLSI” – see references

40 panels each 2 feet wide by 8 feet high arranged in a U-shape in a 30 by 60 foot room. 17,000+ vacuum tubes!
A method for approximating the square root of an integer m

Observe: The sum of the first n odd integers is \(n^2 \).

\[
1 + 3 + \ldots + (2n - 1) = \sum_{i=1}^{n} (2i - 1) = n^2
\]

Therefore if n is the smallest integer such that \(m - \sum_{i=1}^{n} (2i - 1) < 0 \)

then \((n-1)^2 \leq m < n^2\) or \(n-1 \leq \sqrt{m} < n\) or if \(a = 2n-1\) is the \(n\)th odd integer then

\[
\frac{a-1}{2} \leq \sqrt{m} < \frac{a+1}{2}
\]

For additional precision multiply \(m\) by the \(k\)th power of 100, find the square root of \(m \times 100^k\) then divide the answer by \(k\)th power of 10 since \(\sqrt{m \times 100^k} = \sqrt{m} \times 10^k\).

Example: Find \(\sqrt{7251}\) to 2 digits below the decimal point

\[
7251 \times 100^2 = 72,510,000
\]

\[
72,510,000 - (1 + 3 + 5 + \ldots + 17031) = -12256.
\]

Therefore \(a = 17031\) and

\[
\frac{17031-1}{2} \leq \sqrt{72,510,000} < \frac{17031+1}{2} \quad \text{or} \quad 8515 \leq \sqrt{72,510,000} < 8516
\]

After dividing by \(10^2\), \(85.15 \leq \sqrt{7251} < 85.16\).

(REAL answer \(\sqrt{7251} = 85.15280383\))

Reality Check: The ENIAC could do 5000 addition/subtractions per second! Therefore to perform \(2 \times 8516\) additions and subtractions would take approximately 3.4 seconds!
A More Efficient Way – But at a Price!

The sum of the first n odd multiples of 100 is a square.

$$100 + 300 + ... + (2n - 1) \times 100 = \sum_{i=1}^{n} (2i - 1) \times 100 = n^2 \times 100.$$

Therefore if $(2n-1) \times 100$ is the smallest odd multiple of 100 such that $m - \sum_{i=1}^{n} (2i - 1) \times 100 < 0$, then $(n-1)^2 \times 100 \leq m < n^2 \times 100$ or $(n-1) \times 10 \leq \sqrt{m} < n \times 10!$

Thus with one tenth of the work we can find \sqrt{m} to the nearest tens.

However every odd multiple of 100 is the sum of 10 consecutive odd integers:

$$(2n-1) \times 100 = 200(n-1) + 100 = 10 \times 20(n-1) + (1 + 3 + 5 + \ldots + 19) = [20(n-1) + 1] + [20(n-1) + 3] + \ldots + [20(n-1) + 19]$$

Or letting $N = (2n-1) \times 100$, can rewrite is sum as follows

$$N = [N/10 - 9] + [N/10 - 7] + \ldots + [N/10 + 9]$$

Thus we can add back the odd integers starting with $N/10 + 9$ until the sign is positive. If $N/10 \pm j$ (j an odd integer between 1 and 9) was the last (largest) odd integer added back, then $N/10 \pm j$ is also the smallest odd integer such that $m - (1 + 3 + \ldots (N/10 \pm j)) < 0$.

Example: Find $\sqrt{72,150,000}$

1. Subtract the odd multiples of 100

$$72,150,000 - (100 + 300 + \ldots + 170100) = 89900$$
$$72,150,000 - (100 + 300 + \ldots + 170300) = -80400$$

so $N = 170300$.

The largest odd integer subtracted was $170300/10 + 9 = 17039$.

2. Add back the decreasing sequence of odd integers starting with 17039

$$-80400 + (17039 + 17037 + \ldots + 17033) = -12256$$
$$-80400 + (17039 + 17037 + \ldots + 17033 + 17031) = 4775.$$

Thus $N = 17031$ and which agrees with the previous result.

Reality Check: With a reduction in the number of additions and subtractions by a factor of 10, ENIAC could calculate the square root in approximately 0.34 seconds! Note that division by 10 on the ENIAC can be accomplished by a simple right shift!
General Results

Result #1: For \(k \geq 0 \) the sum of the first \(n \) odd multiples of \(100^k \) is a square. That is

\[
\sum_{i=1}^{n} (2i-1) \times 100^k = n^2 \times 100^k
\]

Therefore if \(n \) is the smallest odd multiple of \(100^k \) such that

\[
m - \sum_{i=1}^{n} (2n-1) \times 100^k < 0 \text{ then } (n - 1) \times 10^k \leq \sqrt{m} < n \times 10^k
\]

Reality Check! For \(k > 0 \) this is a terrible approximation for \(\sqrt{m} \)!

Result #2: For \(k > 0 \), if \(N = (2n-1) \times 100^k \) is any odd multiple of \(100^k \) then \(N \) is the sum of ten consecutive odd multiples of \(100^{k-1} \). Specifically

\[
N = \left(\frac{N}{10} - 9 \times 100^{k-1} \right) + \left(\frac{N}{10} - 7 \times 100^{k-1} \right) + \ldots + \left(\frac{N}{10} + 9 \times 100^{k-1} \right)
\]

Proof: Do the algebra! The \(k = 1 \) case says that any odd multiple of 100 is the sum of ten consecutive odd integers.
The Algorithm

1. Starting with 100^k, **subtract** the increasing sequence of odd multiples of 100^k from m until a negative result is obtained.

 If $N = (2n-1)\times100^k$ was the last multiple subtracted, then N is the sum of ten consecutive odd multiples of 100^{k-1}.

2. $N/10 + 9\times100^{k-1}$ was the last (largest) power of 100^{k-1} subtracted. Starting with this value, **add back** the decreasing sequence of odd multiples of 100^{k-1} until a positive result is obtained.

 Replace $k-1$ by k and let N be the last multiple of 100^k (remember $k-1$ is now k) added back. If $k = 0$ then you’re done so go to step 4; else N is the sum of ten consecutive odd multiples of 100^{k-1} so continue on to step 3.

3. $N/10 - 9\times100^{k-1}$ was the last (smallest) power of 100^{k-1} added back. Starting with this value, **subtract** the increasing sequence of odd multiples of 100^{k-1} until a negative result is obtained.

 Replace $k-1$ by k and let N be the last multiple of 100^k (remember $k-1$ is now k) subtracted. If $k = 0$ then you’re done so go to step 4; else N is the sum of ten consecutive odd multiples of 100^{k-1} so go back to step 2.

4. N is the largest odd integer such that

 $$ m - (1 + 3 + \ldots + N) < 0. $$

 Thus $N-1 \leq 2\sqrt{m} < N+1$ or $(N-1)/2 \leq \sqrt{m} < (N+1)/2.$
The ENIAC used N for twice the square root
Example: Find \(\sqrt{72,510,000} \) (again!)

Step #1 - Subtract

\[
72,510,000 - (1 \times 100^3 + 3 \times 100^3 + \ldots + 17 \times 100^3) = -8,490,000
\]

\[
17 \times 100^3 / 10 + 9 \times 100^2 = 179 \times 100^2
\]

Step #2 – Add Back

\[
-8,490,000 + (179 \times 100^2 + 177 \times 100^2 + \ldots + 171 \times 100^2) = 260,000
\]

\[
171 \times 100^2 - 9 \times 100 = 1701 \times 100
\]

Step #3 - Subtract

\[
260,000 - (1701 \times 100 + 1703 \times 100) = -80400
\]

\[
1703 \times 100 / 10 + 9 = 17039
\]

Step #4 – Add Back

\[
-80400 + (17039 + 17037 + \ldots + 17031) = 4775
\]

Thus \(N = 17031 \) which agrees with previous results

Reality Check: This required approximately 42
addition/subtractions meaning the ENIAC could have done this in
approximately 0.0084 sec.
How the ENIAC took the Square Root of \(m = 72,510,000 \)

The ENIAC divider/square rooter actually computed twice the square root of \(m \). It also scaled its calculations to achieve an additional 4 digits of precision! The ENIAC loaded \(m \) into one accumulator called the numerator and set a second accumulator called the denominator to \(100^4 \) by putting a 1 in the 9th position.

Step 1: Subtract

<table>
<thead>
<tr>
<th>Numerator: 0,072,510,000</th>
<th>Denominator: 0,100,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0,027,490,000</td>
<td>0,300,000,000</td>
</tr>
</tbody>
</table>

Right shift denominator and add 9 to 7th digit?

<table>
<thead>
<tr>
<th>Numerator: -0,027,490,000</th>
<th>Denominator: 0,019,000,000</th>
</tr>
</thead>
</table>

No! Scale by left shifting the numerator and by not shifting the denominator

<table>
<thead>
<tr>
<th>Numerator: -0,274,900,000</th>
<th>Denominator: 0,300,000,000</th>
</tr>
</thead>
</table>

\(\text{Subtract } 11 \text{ from } 8^{th} \text{ and } 9^{th} \text{ digits } \rightarrow \) 0,190,000,000

Step 2: Add back

<table>
<thead>
<tr>
<th>Numerator: -0,274,900,000</th>
<th>Denominator: 0,190,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,085,100,000</td>
<td>0,150,000,000</td>
</tr>
</tbody>
</table>

Step 3: Subtract

<table>
<thead>
<tr>
<th>Numerator: 0,851,000,000</th>
<th>Denominator: 0,121,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0,145,000,000</td>
<td>0,173,000,000</td>
</tr>
</tbody>
</table>

Step 4: Add back

<table>
<thead>
<tr>
<th>Numerator: -1,450,000,000</th>
<th>Denominator: 0,171,900,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,089,900,000</td>
<td>0,170,100,000</td>
</tr>
</tbody>
</table>

jump ahead to Step 9: Subtract

<table>
<thead>
<tr>
<th>Numerator: 0,651,600,000</th>
<th>Denominator: 0,170,305,601</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,481,854,399</td>
<td>0,170,305,603</td>
</tr>
<tr>
<td>0,311,548,796</td>
<td>0,170,305,605</td>
</tr>
<tr>
<td>0,141,243,191</td>
<td>0,170,305,607</td>
</tr>
<tr>
<td>-0,029,062,416</td>
<td>0,170,305,609</td>
</tr>
</tbody>
</table>

Thus 17030.5607 after scaling is the best approximation to twice \(\sqrt{72,510,000} \) which is 8515.28035 (actual value is 8515.280383)
Summary

That wasn’t so bad!

Works for small numbers like $\sqrt{2}$

Step 1: Subtract

Numerator: 0,000,000,002 Denominator: 0,100,000,000

-0,099,999,998

Step 2: Add back

Numerator: -0,999,999,980 Denominator: 0,190,000,000

... 0,000,000,020 ...

-0,010,000,000

Step 9: Subtract

Numerator: 0,000,060,400 Denominator: 0,000,028,281

0,000,032,119

0,000,003,836

-0,000,024,449

2.8285 is a good approximation for twice $\sqrt{2}$

Reality Check: According to published specs the ENIAC could take the square root of a 9 digit number in about 26 msec on average (0.026 sec)

References

http://www4.wittenberg.edu/academics/mathcomp/bjsdir/ENIACSquareRoot.htm

ENIAC: The Triumph and Tragedies of the World’s First Computer; Scott McCartney