3. Construct an npda that accepts the language generated by the grammar

\[S \rightarrow aSbb \mid aab \]

Note the language is \(L = \{a^{n+2}b^{2n+1} \mid n \geq 0\} \). First convert to GNF:

\[S \rightarrow aSBB \mid aAB; A \rightarrow a; B \rightarrow b \]

5. Construct an npda corresponding to the grammar

\[S \rightarrow aABB \mid aAA; A \rightarrow aBB \mid a; B \rightarrow bBB \mid A \]

To convert to GNF remove the unit production

\[S \rightarrow aABB \mid aAA; A \rightarrow aBB \mid a; B \rightarrow bBB \mid aBB \mid a \]
10. Find an npda with two states that accepts \(L = \{ a^{n}b^{2n} \mid n \geq 1 \} \)

Start with \(S \rightarrow aSbb \mid abb \) and convert to GNF: \(S \rightarrow aSBB \mid aBB; B \rightarrow b \). Derive the canonical three state npda then eliminate the \(q_1 \) state by using a special stack symbol, \(Y \), to mark it. (Note if we did not replace \(Z \) with \(Y \) the npda will accept strings of the form aabbab since after processing the second “b”, the npda is essentially back to a start state.)

Note: Can only process an “a” if \(S \) is top of stack; processing a “b” removes the \(S \) revealing the \(B \) underneath which is popped by processing a “b”.

11. Show the ndpa in Example 7.8 accepts \(L(aa^*b) \)

The transition \((q0, a, Z, AZ, q0)\) processes an initial “a”. The transition \((q0, a, A, A, q0)\) which optionally follows (since \(A \) is on the stack) will process zero to \(n \) a’s that follow. To only way to get to the final state is to process a “b” via \((q0, b, A, \lambda, q1)\) which brings the \(Z \) to the top of the stack which allows the \(\lambda \) transition to the final state. Thus the language is \(L(aa^*b) \)
Derivation of \textbf{aaab} from CF grammar on page 193

(q0, z, q2) \rightarrow a \ (q0, A, q3) \ (q3, z, q2) \rightarrow a\ a \ (q0, A, q3) \ (q3, z, q2) \rightarrow
\hspace{1cm} a\ a\ a \ (q3, z, q2) \rightarrow a\ a\ a \ (q0, A, q1) \ (q1, z, q2) \rightarrow a\ a\ a\ b

16. Show for every npda there exists an equivalent one satisfying conditions 1 and 2 in the preamble of Theorem 7.1 In particular explain how you would

1. empty the stack at the end and
2. handle transitions of the form \((q_i, a, A, B, q_j)\) and \((q_i, a, A, BCDx, g_j)\) where \(x \in V^*\)

1. To empty the stack create a new final state \(q_F\), add the transition \((q_f, \lambda, z, \lambda, q_F)\) and when in the old no longer final state \(q_f\) and transition pop items off the state.

2. Replace \((q_i, a, A, B, q_j)\) with the pair

\((q_i, a, A, BB, q_{ij})\) and \((q_{ij}, \lambda, B, \lambda, q_j)\) where state \(q_{ij}\) is a unique state

Replace \((q_i, a, A, BCD, g_j)\) with the pair

\((q_i, a, A, CD, q_{ij})\) and \((q_{ij}, \lambda, C, BC, q_i)\) where state \(q_{ij}\) is a unique state

An obvious cascade of similar replacements can replace \((q_i, a, A, BCDx, g_j)\) for \(x \in V^+\).
3. Construct an npda that accepts the language generated by the grammar

\[S \rightarrow aSbb | aab \]

Note the language is \(L = \{ a^{n+2}b^{2n+1} \mid n \geq 0 \} \). First convert to GNF:

\[S \rightarrow aSBB | aAB; A \rightarrow a; B \rightarrow b \]

5. Construct an npda corresponding to the grammar

\[S \rightarrow aABB | aAA ; A \rightarrow aBB | a; B \rightarrow bBB | A \]

To convert to GNF remove the unit production

\[S \rightarrow aABB | aAA; A \rightarrow aBB | a; B \rightarrow bBB | aBB | a \]
10. Find an npda with two states that accepts $L = \{a^n b^{2n} \mid n \geq 1\}$

Start with $S \rightarrow aSbb \mid abb$ and convert to GNF: $S \rightarrow aSB \mid aBB; B \rightarrow b$. Derive the canonical three state npda then eliminate the q_1 state by using a special stack symbol, Y, to mark it. (Note if we did not replace Z with Y the npda will accept strings of the form $aabbab$ since after processing the second “b”, the npda is essentially back to a start state.)

$$
\begin{align*}
S & \rightarrow aSBB \mid aBB; \\
B & \rightarrow b.
\end{align*}
$$

Note: Can only process an “a” if S is top of stack; processing a “b” removes the S revealing the B underneath which is popped by processing a “b”.

11. Show the ndpa in Example 7.8 accepts $L(aa^*b)$

The transition $(q0, a, Z, AZ, q0)$ processes an initial “a”. The transition $(q0, a, A, A, q0)$ which optionally follows (since A is on the stack) will process zero to n a’s that follow. To only way to get to the final state is to process a “b” via $(q0, b, A, \lambda, q1)$ which brings the Z to the top of the stack which allows the λ transition to the final state. Thus the language is $L(aa^*b)$
Derivation of \texttt{aaab} from CF grammar on page 193

\[(q_0, z, q_2) \rightarrow a \quad (q_0, A, q_3) \quad (q_3, z, q_2) \rightarrow a \ a \quad (q_0, A, q_3) \quad (q_3, z, q_2) \rightarrow a \ a \ a \quad (q_3, z, q_2) \rightarrow a \ a \ a \]

16. Show for every npda there exists an equivalent one satisfying conditions 1 and 2 in the preamble of Theorem 7.1 In particular explain how you would

1. empty the stack at the end and
2. handle transitions of the form \((q_i, a, A, B, q_j)\) and \((q_i, a, A, BCDx, g_j)\) where \(x \in V^*\)

1. To empty the stack create a new final state \(q_f\), add the transition \((q_f, \lambda, z, \lambda, q_f)\) and when in the old no longer final state \(q_i\) and transition pop items off the state.

2. Replace \((q_i, a, A, B, q_j)\) with the pair

\[(q_i, a, A, BB, q_{ij})\] and \((q_{ij}, \lambda, B, \lambda, q_j)\) where state \(q_{ij}\) is a unique state

Replace \((q_i, a, A, BCD, g_j)\) with the pair

\[(q_i, a, A, CD, q_{ij})\] and \((q_{ij}, \lambda, C, BC, q_i)\) where state \(q_{ij}\) is a unique state

An obvious cascade of similar replacements can replace \((q_i, a, A, BCDx, g_j)\) for \(x \in V^+\).